Spark机器学习(第2版)(图灵图书)(Word+PDF+ePub+PPT)
作者:拉结帝普·杜瓦(作者),曼普利特·辛格·古特拉(作者),尼克·彭特里思(作者)&0更多
出版:异步社区 图书简介
编辑推荐:
数据科学是一门交叉学科,涉及数理统计、代码编程、商业分析等多个领域的知识。我们正在从 IT 时代步入 DT 时代,数据科学将扮演越来越重要的角色,企业对数据科学家的需求也将快速增加。数据科学家被《哈佛商业评论》评为“21世纪吸引人的职业”,可见其魅力所在。唐亘的这本书系统介绍了目前数据科学领域的核心知识和技能,帮助读者搭建一个系统的知识体系。我把它推荐给对数据科学感兴趣或者立志成为下一位数据科学家的你! GrowingIO 创始人兼 CEO ,曾任 LinkedIn 美国商业分析部高级总监,《首席增长官》一书作者 张溪梦( Simon Zhang ) 图灵奖获得者Jim Gray将数据科学称作科学研究的“第四范式”(the fourth paradigm)。数据科学不仅会影响到科学的各个方面,也会在各领域的应用中发挥重要的作用。唐亘以其坚实的数据科学基础和多年的大数据分析经验,用浅显易懂的方式撰写了这本《深入浅出数据科学:从线性回归到深度学习》。这本书没有局限于坐而论道,让读者对各种模型有恐惧感,而是通过应用实例将问题、概念、模型和解决方案有机地联系起来,使读者能够快速理解和应用数据科学。对于数据科学的学习者和不同领域的应用者来说,这本书非常值得一读。 复旦大学教授,博士生导师,复旦大学航空航天数据研究中心主任 杨卫东 将一本技术书籍写得通俗易懂而又深刻透彻是很难的,但唐亘这本《深入浅出数据科学:从线性回归到深度学习》做到了这一点。这本书从技术、方法、实践这3个维度系统地介绍了数据科学的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。 美国罗格斯大学管理科学及信息系统系终身教授,中国计算机学会大数据专家委员会委员 林晓东作者介绍:
唐亘,数据科学家,专注于机器学习和大数据。曾获得复旦大学的数学和计算机双学士学位;巴黎综合理工的金融硕士学位;法国国立统计与经济管理学校的数据科学硕士学位。热爱并积极参与Apache Spark和Scikit-Learn等开源项目。作为讲师和技术顾问,为多家机构(包括惠普、华为、复旦大学等)提供百余场技术培训。此前的工作和研究集中于经济和量化金融,曾参与经济合作与发展组织(OECD)的研究项目并发表论文,并担任英国知名在线出版社Packt的技术审稿人。内容介绍:
本书全面讲解了数据科学的相关知识,从统计分析学到机器学习、深度学习中用到的算法及模型,借鉴经济学视角给出模型的相关解释,深入探讨模型的可用性,并结合大量的实际案例和代码帮助读者学以致用,将具体的应用场景和现有的模型相结合,从而更好地发现模型的潜在应用场景。 本书可作为数据科学家和数据工程师的学习用书,也适合对数据科学有强烈兴趣的初学者使用,同时也可作为高等院校计算机、数学及相关专业的师生用书和培训学校的教材。 作者段落 "唐亘 (作者)" 图片名 51ryL3nKdCL 结束 标题 Spark机器学习(第2版)(图灵图书) 纸质书价格 ¥77.05 电子书价格 ¥40.99 专题 文件大小 34357 KB 纸书页数 722 出版社 人民邮电出版社有限公司; 第1版 (2018年11月1日) 服务:人工校对0错代录+录完后精校排版 此为收费服务:会收取文档代录之人工费 预估录入后页数:722(带目录书签跳转) 请支持正版图书,莫将本服务所得用于非法目的 ✅文档录入及格式制作人工服务,非骗流量 ❤️ 录入后格式:PDF、Word、PPT、ePub、TXT作者介绍:
拉结帝普·杜瓦(Rajdeep Dua) Salesforce公司工程主管,致力于打造云计算和人工智能团队。曾参与Google的大数据分析工具BigQuery的宣传团队。在云计算、大数据分析和机器学习领域有近20年的经验。 曼普利特·辛格·古特拉(Manpreet Singh Ghotra) Salesforce公司软件工程主管,拥有十余年软件开发经验,目前致力于开发基于Apache Spark的机器学习平台。 尼克·彭特里思(Nick Pentreath) IBM开源数据及人工智能技术中心首席工程师,大数据及机器学习公司Graphflow联合创始人,Spark项目管理委员会成员。 【译者简介】 蔡立宇 曾从事自然语言处理和图数据分析相关工作,现提供数据分析相关的独立咨询和开发服务。坐标深圳。
内容介绍:
本书结合案例研究讲解Spark 在机器学习中的应用,并介绍如何从各种公开渠道获取用于机器学习系统的数据。内容涵盖推荐系统、回归、聚类、降维等经典机器学习算法及其实际应用。第2版新增了有关机器学习数学基础以及Spark ML Pipeline API 的章节,内容更加系统、全面、与时俱进。