作者:朱云峰,孙永荣,赵伟,黄斌,吴玲 单位:中国航空学会;北京航空航天大学 出版:《航空学报》2019年第07期 页数:11页  (PDF与DOC格式可能不同) PDF编号:PDFHKXB2019070200 DOC编号:DOCHKXB2019070209 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 无人机(UAV)态势感知的任务是利用机载传感器对未知环境进行目标识别和引导,针对无人机与非合作目标间中远距离的相对导航问题,提出了一种基于角度和距离量测的相对状态估计算法。在现有滤波算法的基础上,为了提高精度和稳定性,本文利用了列文伯格-马夸尔特(LM)优化的思想对迭代卡尔曼滤波(IEKF)算法进行改进,提出了一种LM-IEKF算法,并推导该算法在迭代过程中的状态更新方程及协方差阵的递推公式。在此基础上,考虑到距离传感器由于信号相关特性而引入的乘性噪声,现有的加性噪声模型难以适应,因此,进一步提出了基于量测噪声自适应修正的Modified LM-IEKF方法,通过在线实时更新噪声阵提高滤波的精度,并设置渐消记忆指数平滑估计结果。算法验证结果表明,与现有的EKF、IEKF算法相比,在仅含加性噪声的情况下,LM-IEKF算法具有更好的性能;在包含乘性噪声的情况下,Modified LM-IEKF可以有效地估计量测噪声,与目前广泛使用的EKF算法相比,在综合相对位置和相对速度精度上分别提高了10%和23%。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。