作者:何海琳,郑建彬,余方利,余烈,詹恩奇 单位:四川省计算机学会;中国科学院成都分院 出版:《计算机应用》2019年第07期 页数:7页  (PDF与DOC格式可能不同) PDF编号:PDFJSJY2019070070 DOC编号:DOCJSJY2019070079 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 针对传统的外骨骼机器人步态检测算法中的信息单一化、准确率低、易陷入局部最优等问题,提出基于改进鲸鱼算法优化的支持向量机(IWOA-SVM)的外骨骼机器人步态检测算法,即在鲸鱼优化算法(WOA)中引入遗传算法(GA)的选择、交叉、变异操作,进而去优化支持向量机(SVM)的惩罚因子与核参数,再使用参数优化后的SVM建立分类模型,从而扩大算法的搜索范围,减小算法陷入局部最优的概率。首先,使用混合传感技术采集步态数据,即通过足底压力传感器和膝关节、髋关节角度传感器采集外骨骼机器人的运动数据,并作为步态检测系统的输入;然后,使用门限法对步态相位进行划分并标记标签;最后,将足底压力信号与髋关节、膝关节角度信号融合作为输入,使用IWOA-SVM算法完成对步态的检测。对6个标准测试函数进行仿真实验,并与GA、粒子群优化(PSO)算法、WOA进行比较,数值实验表明,改进鲸鱼优化算法(IWOA)的鲁棒性、寻优精度、收敛速度均优于其他优化算法。通过分析不同穿戴者的步态检测结果发现,准确率可达98.8%,验证了所提算法在新一代外骨骼机器人中的可行性和实用性,并与基于遗传优化算法的.....。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。