作者:张立智,井陆阳,徐卫晓,谭继文 单位:西北工业大学 出版:《机械科学与技术》2019年第10期 页数:7页  (PDF与DOC格式可能不同) PDF编号:PDFJXKX2019100180 DOC编号:DOCJXKX2019100189 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 针对齿轮箱复合故障诊断问题,将深度卷积模型(CNN)和D-S证据理论相结合,对多传感器信息进行融合。首先,利用深度卷积模型对多个传感器信息进行自适应特征提取,经softmax进行初步分类。其次,将深度卷积模型的输出结果作为D-S证据理论的输入,计算出基本概率分配,根据Dempster合成法则进行决策融合。为验证此方法对齿轮箱复合故障诊断的有效性,使用BP神经网络与D-S证据理论模型作为对比,并对自适应提取的特征与人工特征进行了主成分分析(PCA)。实验结果表明,利用该方法对齿轮箱复合故障进行实验诊断,准确率达到84.58%。相比单一传感器,正确率提高了7.91%;相比BP神经网络与D-S证据理论模型,正确率提高了6.18%,验证了此方法的有效性。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。