作者:周剑飞,刘晨 单位:华北计算技术研究所 出版:《计算机工程与应用》2020年第01期 页数:7页  (PDF与DOC格式可能不同) PDF编号:PDFJSGG2020010390 DOC编号:DOCJSGG2020010399 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 在工业4.0时代,随着IoT的广泛应用,工业设备的故障检测对于提高设备的可靠性具有重要的意义。在实际的工业场景中,由于设备之间的关系复杂多变,难以用统一的模型来表示设备的运行状态。近年来,随着深度学习技术的不断发展与进步,深度学习技术成为故障检测的主流解决方案。提出了一种基于长短记忆神经网络的在线故障检测模型,采用曲线排齐方法对传感器数据进行特征提取,基于长短时记忆神经网络(LSTM)开发故障检测模型,最后借助滑动窗口技术实现了设备故障的在线检测以及模型的在线更新。基于真实的发电厂传感数据进行了实验验证,实验结果表明了该方法的有效性。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。