作者:薛大为,杨春兰,孔慧芳,鲍俊宏 单位:华南理工大学 出版:《现代食品科技》2016年第11期 页数:6页  (PDF与DOC格式可能不同) PDF编号:PDFGZSP2016110490 DOC编号:DOCGZSP2016110499 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 利用电子鼻对6个不同贮藏时间下5个等级黄山毛峰茶进行检测。首先获取反映茶叶香气的原始特征向量,再通过主成分分析法(PCA)提取出前5个主成分作为主特征向量,然后以主特征向量作为BP神经网络(BPNN)的输入,建立黄山毛峰茶贮藏时间预测模型(称为PCA-BPNN)。通过对75个测试样本(每等级15个)实验测试表明:PCA-BPNN对于贮藏0 d的茶叶,最大预测误差为7 d,5个(6.67%)样本预测误差超过10 d;对于贮藏60 d的茶叶,最大预测误差为10 d,4个(5.33%)样本预测误差超过10 d;对于贮藏120 d的茶叶,最大预测误差为16 d,7个(9.33%)样本预测误差超过10 d;对于贮藏180 d的茶叶,最大预测误差为19 d,8个(10.67%)样本预测误差超过10 d;对于贮藏240 d的茶叶,最大预测误差为21 d,8个(10.67%)样本预测误差超过10 d;对于贮藏300 d的茶叶,最大预测误差为14 d,6个(8.00%)样本预测误差超过10 d。验证了PCA-BPNN预测模型用于检测黄山毛峰茶贮藏时间的可行性,同时与以原始特.....。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。