作者:姜辉,杨建国,姚晓栋,张余升,袁峰 单位:中国机械工程学会 出版:《机械工程学报》2013年第15期 页数:7页  (PDF与DOC格式可能不同) PDF编号:PDFJXXB2013150160 DOC编号:DOCJXXB2013150169 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 针对数控(Computer numerical control,CNC)机床主轴热漂移误差建模及预测问题,提出一种基于贝叶斯推断的最小二乘支持向量机(Least squares support vector machine,LS-SVM)建模方法。以一台双转台五轴加工中心为研究对象,进行热误差测量试验,利用非接触式激光位移传感器及温度传感器同步测量机床主轴各运动方向热漂移误差及温度变化数值,获取建模数据。模型训练过程运用贝叶斯推断方法对LS-SVM的正规化参数、核函数参数进行优化选择,获取基于参数后验概率最大化的最优参数组合,进而构建可准确预测机床主轴热漂移误差的优化模型。分别利用基于贝叶斯推断的LS-SVM模型、传统LS-SVM模型以及BP神经网络(Back propagation artificial neural networks,BP-ANN)模型对机床变工况条件下主轴热漂移误差进行预测,通过预测效果对比,基于贝叶斯推断的LS-SVM模型具有更高的预测精度,在机床变工况条件下仍具有较高鲁棒性与泛化能力,可以很好地弥补现有建模方法的部分局限性。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。