作者:王之琼,曲璐渲,隋雨彤,鲍楠,康雁 单位:中国生物医学工程学会 出版:《中国生物医学工程学报》2014年第04期 页数:7页  (PDF与DOC格式可能不同) PDF编号:PDFZSWY2014040050 DOC编号:DOCZSWY2014040059 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 由于年龄和身体条件的限制,在老年人群中跌倒是非常普遍的现象。因此,根据老年人跌倒的运动特征,远程监测他们在各个时间段的状态,以便在其摔倒或突发状况时及时采取措施显得尤为重要。针对人体运动状态进行监测,分析人体运动学特征,提出基于极限学习机的跌倒检测算法。运用三维加速度传感器采集人体的三维加速度值,建立跌倒检测特征模型。在此基础上,建立基于极限学习机的跌倒检测分类器,完成对老年人的计算机辅助跌倒检测。实验数据共540例样本,选用了不同数量的训练集和测试集,其中440例作为训练数据,其余100例为测试数据。测试结果表明,准确率为93%,敏感度为87.5%,特异性为91.7%,具有良好的分类性能。在对分类训练的运行时间方面,基于极限学习机的跌倒检测方法与传统的机器学习方法相比具有明显优势。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。