作者:魏国,刘剑,孙金玮,孙圣和 单位:中国自动化学会;中国科学院自动化所 出版:《自动化学报》2008年第08期 页数:7页  (PDF与DOC格式可能不同) PDF编号:PDFMOTO2008080070 DOC编号:DOCMOTO2008080079 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 提出了基于最小二乘支持向量机(Least squares support vector machine,LS-SVM)的非线性多功能传感器信号重构方法.不同于通常采用的经验风险最小化重构方法,支持向量机(Support vector machine,SVM)是基于结构风险最小化准则的新型机器学习方法,适用于小样本标定数据情况,可有效抑制过拟合问题并改善泛化性能.在SVM基础上,LS-SVM将不等式约束转化为等式约束,极大地简化了二次规划问题的求解.研究中通过L-折交叉验证实现调整参数优化,在两种非线性情况下对多功能传感器的输入信号进行了重构,实验结果显示重构精度分别达到0.154%和1.146%,表明提出的LS-SVM重构方法具有高可靠性和稳定性,验证了方法的有效性。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。