作者:蒙万隆,郑丽敏,杨璐,程国栋,许姗姗 单位:北京一轻研究院有限公司 出版:《食品工业科技》2018年第07期 页数:6页  (PDF与DOC格式可能不同) PDF编号:PDFSPKJ2018070430 DOC编号:DOCSPKJ2018070439 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 为预测不同肥瘦配比猪肉的新鲜度,对4℃恒温贮藏条件下的新鲜猪肉进行挥发性盐基总氮(Total Volatile Basic Nitrogen,TVB-N)检测和营养成分检测,同时利用电子鼻技术检测挥发性气味的信息。以传感器阵列特征值为自变量建立蛋白质、脂肪的回归预测模型,分别对不同肥瘦配比的猪肉样本建立不分类和分类2种TVB-N神经网络预测模型。结果表明:先分类再建立神经网络模型预测的效果更优,将样本进行二分类建立2个模型后,模型训练组的相关系数达0.994、0.985(p<0.01),预测组的相关系数达到0.984、0.979(p<0.01);模型的绝对误差小而且分布区间集中,训练组和预测组各有86%、62.6%的样本的绝对误差在0~1之间;训练组中没有绝对误差大于2.5的样本,预测组中仅有8.5%的样本绝对误差大于2.5。电子鼻传感器特征信号与TVB-N数据具有很强的相关性,电子鼻可以快速预测出不同肥瘦配比猪肉在贮藏期间TVB-N含量的变化,进而无损的评价猪肉的新鲜度。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。