作者:杨洪涛,章刘沙,周姣,费业泰,彭东林 单位:中国科学院长春光机所;中国仪器仪表学会 出版:《光学精密工程》2016年第10期 页数:9页  (PDF与DOC格式可能不同) PDF编号:PDFGXJM2016100220 DOC编号:DOCGXJM2016100229 下载格式:PDF + Word/doc 文字可复制、可编辑
  • 为了提高寄生式时栅传感器的测量精度,分析了它的工作原理和动态误差组成,得到其主要误差分量为常值误差、周期误差和随机误差等。针对寄生式时栅误差特点,建立了寄生式时栅动态误差高精度预测模型,并与其他建模方法进行了比较。选用插入标准值的贝叶斯预测模型,以实际测量的传感器第一个对极动态误差数据进行建模,在后续对极特定位置插入部分实际误差测量数据,建立误差预测模型,预测了传感器后83个对极的动态误差。另选用三次样条插值和BP神经网络建模方法对寄生式时栅整圈动态误差建模,并与建立的误差模型进行了对比。验证实验表明,三次样条插值建模时间最短(0.62s),但其建模精度不高(16.050 0″);贝叶斯动态模型建模时间(0.86s)略长于三次样条插值,但建模精度最高(0.415 3″);BP神经网络建模时间最长(32min),但建模精度最低(19.680 2″)。同时贝叶斯插入标准值建模方法所需数据点(69395个)远少于三次样条和BP神经网络建模数据点(235526个),节省了大量的标定时间和建模数据量,因此可用于寄生式时栅传感器的动态测量误差高精度建模修正。

    提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。