《基于小波包和RBF神经网络的瓦斯传感器故障诊断》PDF+DOC
作者:单亚峰,孙璐,付华,訾海
单位:中国微米纳米技术学会;东南大学
出版:《传感技术学报》2015年第02期
页数:6页 (PDF与DOC格式可能不同)
PDF编号:PDFCGJS2015020230
DOC编号:DOCCGJS2015020239
下载格式:PDF + Word/doc 文字可复制、可编辑
《基于小波包和神经网络的瓦斯传感器故障诊断》PDF+DOC2010年第05期 赵金宪,金鸿章
《基于小波神经网络技术的井下瓦斯传感器故障诊断分析》PDF+DOC2016年第05期 邵俊倩
《基于遗传算法优化的RBF神经网络的压力传感器故障诊断》PDF+DOC2016年第07期 那文波,何宁,刘巍,刘甜甜
《基于HPSO-RBF神经网络的瓦斯传感器故障诊断》PDF+DOC2015年第03期 王婷,李国勇,吕世轩
《基于小波包和GBDT的瓦斯传感器故障诊断》PDF+DOC2016年第12期 王立平,邓芳明
《基于小波包与EKF-RBF神经网络辨识的瓦斯传感器故障诊断》PDF+DOC2011年第05期 王军号,孟祥瑞,吴宏伟
《基于小波包与SOM神经网络的传感器故障诊断》PDF+DOC2017年第07期 李娟娟,孟国营,谢广明,贾一凡
《基于RBF神经网络的水下机器人传感器状态监测方法研究》PDF+DOC2005年第06期 张铭钧,孙瑞琛,王玉甲
《一种基于RBF神经网络的传感器故障诊断方法》PDF+DOC2002年第06期 李尔国,俞金寿
《基于RBF时间序列预测器的传感器故障诊断方法研究》PDF+DOC2010年第05期 曹正洪,沈继红
针对瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障为研究对象,提出了一种基于减聚类(SCM)与粒子群(PSO)算法优化的RBF神经网络进行模式分类与辨识的瓦斯传感器故障诊断方法。首先,利用三层小波包分解得到各个节点的分解系数,采用一定的削减算法使故障的瞬态信号特征得到加强,获取最优的特征能量谱。再利用SCM-PSO算法优化RBF神经网络,使粒子的搜索速度更快,更有利于发现全局最优解。最后通过实验对比分析,该方法具有训练速度快、分类精度高的特点,辨识正确率在95%以上,能够显著提高故障诊断的速度和准确性。
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。